|
|
Venues (Conferences, Journals, ...)
|
|
GrowBag graphs for keyword ? (Num. hits/coverage)
Group by:
The graphs summarize 36 occurrences of 25 keywords
|
|
|
Results
Found 903 publication records. Showing 903 according to the selection in the facets
Hits ?▲ |
Authors |
Title |
Venue |
Year |
Link |
Author keywords |
120 | Guo-Zheng Li 0001, Hao-Hua Meng, Mary Qu Yang, Jack Y. Yang |
Asymmetric Bagging and Feature Selection for Activities Prediction of Drug Molecules. |
IMSCCS |
2007 |
DBLP DOI BibTeX RDF |
Feature Selection, Ensemble Learning, Bagging, QSAR, QSAR |
91 | A. Ammar Ghaibeh, Mikio Sasaki, Hiroshi Chuman |
Using Voronoi Grid and SVM Linear Regression in Drug Discovery. |
CIBCB |
2006 |
DBLP DOI BibTeX RDF |
|
88 | Muhammad Muddassar, F. A. Pasha, Hwan Won Chung, Kyung Ho Yoo, Chang Hyun Oh, Seung Joo Cho |
The Receptor Guided 3D-QSAR Method is a Powerful Tool to Design More Potent IGF-1R Inhibitors. |
FBIT |
2007 |
DBLP DOI BibTeX RDF |
|
75 | Irene Luque Ruiz, Miguel Ángel Gómez-Nieto |
A Tool for the Calculation of Molecular Descriptors in the Development of QSAR Models. |
ICCSA (1) |
2008 |
DBLP DOI BibTeX RDF |
Molecular descriptors, Java, QSAR, Computational Chemistry |
73 | Walter Cedeñto, Dimitris K. Agraflotis |
Particle swarms for drug design. |
Congress on Evolutionary Computation |
2005 |
DBLP DOI BibTeX RDF |
|
73 | Walter Cedeño, Dimitris K. Agrafiotis |
A Comparison of Particle Swarms Techniques for the Development of Quantitative Structure-Activity Relationship Models for Drug Design. |
CSB Workshops |
2005 |
DBLP DOI BibTeX RDF |
|
70 | Yen-Chih Chen, Jinn-Moon Yang, Chi-Hung Tsai, Cheng-Yan Kao |
GEMPLS: A New QSAR Method Combining Generic Evolutionary Method and Partial Least Squares. |
EvoWorkshops |
2005 |
DBLP DOI BibTeX RDF |
|
70 | Zhiwei Wang, Gregory L. Durst, Russell C. Eberhart, Donald B. Boyd, Zina Ben-Miled |
Particle Swarm Optimization and Neural Network Application for QSAR. |
IPDPS |
2004 |
DBLP DOI BibTeX RDF |
|
57 | Sivaprakasam Prasanna, Pankaj R. Daga, Aihua Xie, Robert J. Doerksen |
Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking. |
J. Comput. Aided Mol. Des. |
2009 |
DBLP DOI BibTeX RDF |
3D-QSAR, CoMFA, CoMSIA, GSK-3, Maleimides, Docking |
57 | Uko Maran, Sulev Sild |
QSAR Modeling of Genotoxicity on Non-congeneric Sets of Organic Compounds. |
Artif. Intell. Rev. |
2003 |
DBLP DOI BibTeX RDF |
Ames test, forward selection, molecular descriptors, mutagenicity, multi-linear regression, quantum chemical descriptors, neural network, QSAR |
55 | Emilio Benfenati |
Modelling Aquatic Toxicity with Advanced Computational Techniques: Procedures to Standardize Data and Compare Models. |
KELSI |
2004 |
DBLP DOI BibTeX RDF |
|
55 | Marian Viorel Craciun, Daniel Neagu, Christoph König 0004, Severin Bumbaru |
A Study of Aquatic Toxicity Using Artificial Neural Networks. |
KES |
2003 |
DBLP DOI BibTeX RDF |
|
51 | F. A. Pasha, Muhammad Muddassar, So Ha Lee, Taebo Sim, Jung-Mi Hah, Seung Joo Cho |
In silico Ligand-Based (LB) and Docking-Based (DB) 3D-QSAR Study of Potent Chk2 Inhibitors. |
FBIT |
2007 |
DBLP DOI BibTeX RDF |
|
51 | Changjian Huang, Mark J. Embrechts, Nagamani Sukumar, Curt M. Breneman |
Data Fusion and Auto-fusion for Quantitative Structure-Activity Relationship (QSAR). |
ICANN (1) |
2007 |
DBLP DOI BibTeX RDF |
|
45 | Shuxing Zhang, Alexander Golbraikh, Scott Oloff, Harold Kohn, Alexander Tropsha |
A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. |
J. Chem. Inf. Model. |
2006 |
DBLP DOI BibTeX RDF |
|
42 | Kirandeep Kaur, Tanaji T. Talele |
Structure-based CoMFA and CoMSIA study of indolinone inhibitors of PDK1. |
J. Comput. Aided Mol. Des. |
2009 |
DBLP DOI BibTeX RDF |
3D QSAR, CoMFA, CoMSIA, Indolinone, PDK1 |
39 | Kazuya Nakao, Masaaki Fujikawa, Ryo Shimizu, Miki Akamatsu |
QSAR application for the prediction of compound permeability with in silico descriptors in practical use. |
J. Comput. Aided Mol. Des. |
2009 |
DBLP DOI BibTeX RDF |
PAMPA, Log P, pK a, PSA, Caco-2, QSAR |
39 | Alexander V. Gaiday, Igor A. Levandovskiy, Kendall G. Byler, Tatyana E. Shubina |
Mechanism of Influenza A M2 Ion-Channel Inhibition: A Docking and QSAR Study. |
ICCS (2) |
2008 |
DBLP DOI BibTeX RDF |
Influenza A, ion-channel inhibition, antiviral drugs, cage compounds, QSAR |
36 | Wei Li 0035, Yannan Zhao, Yixu Song, Zehong Yang |
COX-2 activity prediction in Chinese medicine using neural network based ensemble learning methods. |
IJCNN |
2008 |
DBLP DOI BibTeX RDF |
|
36 | Jesse Davis, Vítor Santos Costa, Soumya Ray, David Page |
An integrated approach to feature invention and model construction for drug activity prediction. |
ICML |
2007 |
DBLP DOI BibTeX RDF |
|
36 | Vladimir Svetnik, Andy Liaw, Christopher Tong, Ting Wang |
Application of Breiman's Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules. |
Multiple Classifier Systems |
2004 |
DBLP DOI BibTeX RDF |
|
36 | Ferenc Darvas, Ákos Papp, István Bágyi, Géza Ambrus, László Ürge |
OpenMolGRID, a GRID Based System for Solving Large-Scale Drug Design Problems. |
European Across Grids Conference |
2004 |
DBLP DOI BibTeX RDF |
|
33 | Peng Zhou 0003, Xiang Chen, Zhicai Shang |
Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities. |
J. Comput. Aided Mol. Des. |
2009 |
DBLP DOI BibTeX RDF |
Multi-conformation-based quantitative structure-activity relationship, Side-chain conformational space analysis, Rotamer library, Self-consistent mean field theory, Protein-peptide complex, HLA-A*0201-restricted CTL epitope |
33 | Riccardo Cardin, Lisa Michielan, Stefano Moro, Alessandro Sperduti |
PCA-Based Representations of Graphs for Prediction in QSAR Studies. |
ICANN (2) |
2009 |
DBLP DOI BibTeX RDF |
PCA for graphs, prediction on structured domains, supervised learning |
33 | Winston Yu-Chen Chen, Po-Yuan Chen, Calvin Yu-Chian Chen, Jing-Gung Chung |
Exploring 3D-QSAR pharmacophore mapping of azaphenanthrenone derivatives for mPGES-1 inhibition Using HypoGen technique. |
CIBCB |
2008 |
DBLP DOI BibTeX RDF |
|
33 | Yubin Ji, Ran Tian, Wenhan Lin |
QSAR and Molecular Docking Study of a Series of Combretastatin Analogues Tubulin Inhibitors. |
LSMS (2) |
2007 |
DBLP DOI BibTeX RDF |
|
33 | Marian Viorel Craciun, Adina Cocu, Luminita Dumitriu, Cristina Segal |
A Hybrid Feature Selection Algorithm for the QSAR Problem. |
International Conference on Computational Science (1) |
2006 |
DBLP DOI BibTeX RDF |
|
33 | Alessio Micheli, Filippo Portera, Alessandro Sperduti |
QSAR/QSPR Studies by Kernel Machines, Recursive Neural Networks and Their Integration. |
WIRN |
2003 |
DBLP DOI BibTeX RDF |
|
30 | Kamel Mansouri, José T. Moreira-Filho, Charles N. Lowe, Nathaniel Charest, Todd Martin, Valery Tkachenko, Richard S. Judson, Mike Conway, Nicole C. Kleinstreuer, Antony J. Williams |
Free and open-source QSAR-ready workflow for automated standardization of chemical structures in support of QSAR modeling. |
J. Cheminformatics |
2024 |
DBLP DOI BibTeX RDF |
|
30 | Joyce K. Daré, Matheus P. Freitas |
Is conformation relevant for QSAR purposes? 2D Chemical representation in a 3D-QSAR perspective. |
J. Comput. Chem. |
2022 |
DBLP DOI BibTeX RDF |
|
30 | Zhenxing Wu, Minfeng Zhu, Yu Kang 0002, Elaine Lai-Han Leung, Tailong Lei, Chao Shen, Dejun Jiang 0002, Zhe Wang 0041, Dong-Sheng Cao 0001, Tingjun Hou |
Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. |
Briefings Bioinform. |
2021 |
DBLP DOI BibTeX RDF |
|
30 | Shaoqi Chen, Dongyu Xue, Guohui Chuai, Qiang Yang 0001, Qi Liu 0019 |
FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery. |
Bioinform. |
2021 |
DBLP DOI BibTeX RDF |
|
30 | Amit Kumar Halder, M. Natália Dias Soeiro Cordeiro |
QSAR-Co-X: an open source toolkit for multitarget QSAR modelling. |
J. Cheminformatics |
2021 |
DBLP DOI BibTeX RDF |
|
30 | Rino Ragno |
www.3d-qsar.com: a web portal that brings 3-D QSAR to all electronic devices - the Py-CoMFA web application as tool to build models from pre-aligned datasets. |
J. Comput. Aided Mol. Des. |
2019 |
DBLP DOI BibTeX RDF |
|
30 | Pravin Ambure, Amit Kumar Halder, Humberto González Díaz, M. Natália Dias Soeiro Cordeiro |
QSAR-Co: An Open Source Software for Developing Robust Multitasking or Multitarget Classification-Based QSAR Models. |
J. Chem. Inf. Model. |
2019 |
DBLP DOI BibTeX RDF |
|
30 | Nicolas Bloyet |
Caractérisation et plongement de sous-graphes colorés: application à la construction de modèles structures à activité (QSAR). (Characterization and embeddings of colored subgraphs : application to quantitative structure-activity relationship (QSAR) models). |
|
2019 |
RDF |
|
30 | João Paulo Ataide Martins, Marco Antônio Rougeth de Oliveira, Mário Sérgio Oliveira de Queiroz |
Web-4D-QSAR: A web-based application to generate 4D-QSAR descriptors. |
J. Comput. Chem. |
2018 |
DBLP DOI BibTeX RDF |
|
30 | Villu Ruusmann, Sulev Sild, Uko Maran |
QSAR DataBank - an approach for the digital organization and archiving of QSAR model information. |
J. Cheminformatics |
2014 |
DBLP DOI BibTeX RDF |
|
30 | Richard Cox, Darren V. S. Green, Christopher N. Luscombe, Noj Malcolm, Stephen D. Pickett |
QSAR workbench: automating QSAR modeling to drive compound design. |
J. Comput. Aided Mol. Des. |
2013 |
DBLP DOI BibTeX RDF |
|
30 | Sergii Novotarskyi |
QSAR approaches to predict human cytochrome P450 inhibition (QSAR-basierter Ansatz zur Vorhersage der Enzymhemmung von humanem Cytochrom P450) (PDF / PS) |
|
2013 |
RDF |
|
30 | Raghuvir R. S. Pissurlenkar, Vijay M. Khedkar, Radhakrishnan P. Iyer, Evans C. Coutinho |
Ensemble QSAR: A QSAR method based on conformational ensembles and metric descriptors. |
J. Comput. Chem. |
2011 |
DBLP DOI BibTeX RDF |
|
30 | Eric J. Martin, Prasenjit Mukherjee, David C. Sullivan, Johanna M. Jansen |
Profile-QSAR: A Novel meta-QSAR Method that Combines Activities across the Kinase Family To Accurately Predict Affinity, Selectivity, and Cellular Activity. |
J. Chem. Inf. Model. |
2011 |
DBLP DOI BibTeX RDF |
|
30 | Iurii Sushko |
Applicability Domain of QSAR models (Anwendbarkeitsbereich von QSAR-Modellen) (PDF / PS) |
|
2011 |
RDF |
|
30 | João Paulo Ataide Martins, Euzébio G. Barbosa, Kerly F. M. Pasqualoto, Márcia M. C. Ferreira |
LQTA-QSAR: A New 4D-QSAR Methodology. |
J. Chem. Inf. Model. |
2009 |
DBLP DOI BibTeX RDF |
|
30 | Jui-Hua Hsieh, Xiang S. Wang, Denise G. Teotico, Alexander Golbraikh, Alexander Tropsha |
Differentiation of AmpC beta-lactamase binders vs. decoys using classification k NN QSAR modeling and application of the QSAR classifier to virtual screening. |
J. Comput. Aided Mol. Des. |
2008 |
DBLP DOI BibTeX RDF |
|
30 | Sofie Van Damme, Patrick Bultinck |
A new computer program for QSAR-analysis: ARTE-QSAR. |
J. Comput. Chem. |
2007 |
DBLP DOI BibTeX RDF |
|
30 | Andrzej Bak, Jaroslaw Polanski |
Modeling Robust QSAR 3: SOM-4D-QSAR with Iterative Variable Elimination IVE-PLS: Application to Steroid, Azo Dye, and Benzoic Acid Series. |
J. Chem. Inf. Model. |
2007 |
DBLP DOI BibTeX RDF |
|
30 | Osvaldo Andrade Santos-Filho, Anton J. Hopfinger |
Structure-Based QSAR Analysis of a Set of 4-Hydroxy-5, 6-dihydropyrones as Inhibitors of HIV-1 Protease: An Application of the Receptor-Dependent (RD) 4D-QSAR Formalism. |
J. Chem. Inf. Model. |
2006 |
DBLP DOI BibTeX RDF |
|
30 | Gyanendra Pandey, Anil K. Saxena |
3D QSAR Studies on Protein Tyrosine Phosphatase 1B Inhibitors: Comparison of the Quality and Predictivity among 3D QSAR Models Obtained from Different Conformer-Based Alignments. |
J. Chem. Inf. Model. |
2006 |
DBLP DOI BibTeX RDF |
|
30 | Qi Shen, Jian-Hui Jiang, Jing-chao Tao, Guo-Li Shen, Ru-Qin Yu |
Modified Ant Colony Optimization Algorithm for Variable Selection in QSAR Modeling: QSAR Studies of Cyclooxygenase Inhibitors. |
J. Chem. Inf. Model. |
2005 |
DBLP DOI BibTeX RDF |
|
30 | Rafal Gieleciak, Tomasz Magdziarz, Andrzej Bak, Jaroslaw Polanski |
Modeling Robust QSAR. 1. Coding Molecules in 3D-QSAR - from a Point to Surface Sectors and Molecular Volumes. |
J. Chem. Inf. Model. |
2005 |
DBLP DOI BibTeX RDF |
|
30 | Craig L. Senese, Anton J. Hopfinger |
A Simple Clustering Technique To Improve QSAR Model Selection and Predictivity: Application to a Receptor Independent 4D-QSAR Analysis of Cyclic Urea Derived Inhibitors of HIV-1 Protease. |
J. Chem. Inf. Comput. Sci. |
2003 |
DBLP DOI BibTeX RDF |
|
30 | Vellarkad N. Viswanadhan, Geoffrey A. Mueller, Subhash C. Basak, John N. Weinstein |
Comparison of a Neural Net-Based QSAR Algorithm (PCANN) with Hologram- and Multiple Linear Regression-Based QSAR Approaches: Application to 1, 4-Dihydropyridine-Based Calcium Channel Antagonists. |
J. Chem. Inf. Comput. Sci. |
2001 |
DBLP DOI BibTeX RDF |
|
30 | Nikolai S. Zefirov, Vladimir A. Palyulin |
QSAR for Boiling Points of "Small" Sulfides. Are the "High-Quality Structure-Property-Activity Regressions" the Real High Quality QSAR Models? |
J. Chem. Inf. Comput. Sci. |
2001 |
DBLP DOI BibTeX RDF |
|
30 | Kiyoshi Hasegawa, Toshiro Kimura, Kimito Funatsu |
GA Strategy for Variable Selection in QSAR Studies: Application of GA-Based Region Selection to a 3D-QSAR Study of Acetylcholinesterase Inhibitors. |
J. Chem. Inf. Comput. Sci. |
1999 |
DBLP DOI BibTeX RDF |
|
30 | Alexandru T. Balaban |
Neural Networks in QSAR and Drug Design. Edited by J. Devillers. Volume 2 in the Series: Principles of QSAR and Drug Design. Academic Press: San Diego, 1996, 284 pp. ISBN 0-12-213815-5. |
J. Chem. Inf. Comput. Sci. |
1997 |
DBLP DOI BibTeX RDF |
|
24 | Nathan Brown |
Chemoinformatics - an introduction for computer scientists. |
ACM Comput. Surv. |
2009 |
DBLP DOI BibTeX RDF |
molecular modeling, drug discovery, docking, QSAR, Chemoinformatics, chemometrics |
24 | Ulrich Rückert 0002 |
Capacity Control for Partially Ordered Feature Sets. |
ECML/PKDD (2) |
2009 |
DBLP DOI BibTeX RDF |
capacity control, partially ordered features, graph mining, QSAR |
24 | Kurt De Grave, Jan Ramon, Luc De Raedt |
Active Learning for High Throughput Screening. |
Discovery Science |
2008 |
DBLP DOI BibTeX RDF |
Chemical compounds, Optimization, Active Learning, QSAR |
24 | Axel J. Soto, Rocío L. Cecchini, Gustavo E. Vazquez, Ignacio Ponzoni |
A Wrapper-Based Feature Selection Method for ADMET Prediction Using Evolutionary Computing. |
EvoBIO |
2008 |
DBLP DOI BibTeX RDF |
hydrophobicity, Genetic Algorithms, Feature Selection, QSAR |
24 | Frank Lemke, Emilio Benfenati, Johann-Adolf Müller |
Data-driven modeling and prediction of acute toxicity of pesticide residues. |
SIGKDD Explor. |
2006 |
DBLP DOI BibTeX RDF |
DEMETRA, european chemicals policy, knowledge discovery workflow, pesticide toxicity, predictive QSAR models, self-organizing modeling, model validation |
24 | Uko Maran, Sulev Sild, Paolo Mazzatorta, Mosé Casalegno, Emilio Benfenati, Mathilde Romberg |
Grid Computing for the Estimation of Toxicity: Acute Toxicity on Fathead Minnow (Pimephales promelas). |
GCCB |
2006 |
DBLP DOI BibTeX RDF |
molecular descriptors, distributed computing, workflow, chemistry, QSAR, modelling and prediction |
18 | Gary B. Fogel, Jonathan Tran, Stephen Johnson, David Hecht |
Machine learning approaches for customized docking scores: Modeling of inhibition of Mycobacterium tuberculosis enoyl acyl carrier protein reductase. |
CIBCB |
2010 |
DBLP DOI BibTeX RDF |
|
18 | Srinivas R. Alla, Akmal Aulia, Sunil Kumar, Rajni Garg |
Using hybrid GA-ANN to predict biological activity of HIV protease inhibitors. |
CIBCB |
2008 |
DBLP DOI BibTeX RDF |
|
18 | Sulev Sild, Uko Maran, Mathilde Romberg, Bernd Schuller, Emilio Benfenati |
OpenMolGRID: Using Automated Workflows in GRID Computing Environment. |
EGC |
2005 |
DBLP DOI BibTeX RDF |
|
18 | Saso Dzeroski, Ljupco Todorovski, Peter Ljubic |
Inductive Databases of Polynomial Equations. |
DaWaK |
2004 |
DBLP DOI BibTeX RDF |
|
18 | Giuseppina C. Gini, Emilio Benfenati, Daniel Boley |
Clustering and classification techniques to assess aquatic toxicity. |
KES |
2000 |
DBLP DOI BibTeX RDF |
|
15 | José Ramón Mora, Edgar Márquez, Noel Pérez-Pérez, Ernesto Contreras-Torres, Yunierkis Pérez-Castillo, Guillermín Agüero-Chapín, Felix Martinez-Rios, Yovani Marrero-Ponce, Stephen J. Barigye |
Rethinking the applicability domain analysis in QSAR models. |
J. Comput. Aided Mol. Des. |
2024 |
DBLP DOI BibTeX RDF |
|
15 | Thomas M. Whitehead, Joel Strickland, Gareth John Conduit, Alexandre Borrel, Daniel Mucs, Irene Baskerville-Abraham |
Quantifying the Benefits of Imputation over QSAR Methods in Toxicology Data Modeling. |
J. Chem. Inf. Model. |
2024 |
DBLP DOI BibTeX RDF |
|
15 | Wouter Heyndrickx, Lewis H. Mervin, Tobias Morawietz, Noé Sturm, Lukas Friedrich, Adam Zalewski, Anastasia Pentina, Lina Humbeck, Martijn Oldenhof, Ritsuya Niwayama, Peter Schmidtke, Nikolas Fechner, Jaak Simm, Adam Arany, Nicolas Drizard, Rama Jabal, Arina Afanasyeva, Regis Loeb, Shlok Verma, Simon Harnqvist, Matthew Holmes, Balazs Pejo, Maria Telenczuk, Nicholas Holway, Arne Dieckmann, Nicola Rieke, Friederike Zumsande, Djork-Arné Clevert, Michael Krug, Christopher N. Luscombe, Darren V. S. Green, Peter Ertl, Peter Antal, David Marcus, Nicolas Do Huu, Hideyoshi Fuji, Stephen D. Pickett, Gergely Ács, Eric Boniface, Bernd Beck, Yax Sun, Arnaud Gohier, Friedrich Rippmann, Ola Engkvist, Andreas H. Göller, Yves Moreau, Mathieu N. Galtier, Ansgar Schuffenhauer, Hugo Ceulemans |
MELLODDY: Cross-pharma Federated Learning at Unprecedented Scale Unlocks Benefits in QSAR without Compromising Proprietary Information. |
J. Chem. Inf. Model. |
2024 |
DBLP DOI BibTeX RDF |
|
15 | Muhammad Nauman Akram, Muhammad Amin, B. M. Golam Kibria, Mohammad Arashi, Adewale F. Lukman, Nimra Afzal |
A new improved Liu estimator for the QSAR model with inverse Gaussian response. |
Commun. Stat. Simul. Comput. |
2024 |
DBLP DOI BibTeX RDF |
|
15 | Iffat Habib, Tahir Ali Chohan, Talha Ali Chohan, Fakhra Batool, Umair Khurshid, Anjum Khursheed, Ali Raza, Mukhtar Ansari, Arshad Hussain, Sirajudheen Anwar, Nasser A. Awadh Ali, Hammad Saleem |
Integrated computational approaches for designing potent pyrimidine-based CDK9 inhibitors: 3D-QSAR, docking, and molecular dynamics simulations. |
Comput. Biol. Chem. |
2024 |
DBLP DOI BibTeX RDF |
|
15 | Supawit Phimonjit, Sutthiphon Thankam, Pawaris Techahongsa, Tipajin Thaipisutikul |
Towards Drug Discovery: A Comparative Study of Machine Learning-enhanced QSAR Prediction. |
KST |
2024 |
DBLP DOI BibTeX RDF |
|
15 | Ronghe Zhou, Yong Zhang 0022, Kai He |
A novel hybrid binary whale optimization algorithm with chameleon hunting mechanism for wrapper feature selection in QSAR classification model:A drug-induced liver injury case study. |
Expert Syst. Appl. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Gabriel Corrêa Veríssimo, Simone Queiroz Pantaleão, Philipe de Oliveira Fernandes, Jadson Castro Gertrudes, Thales Kronenberger, Káthia Maria Honório, Vinicius Gonçalves Maltarollo |
MASSA Algorithm: an automated rational sampling of training and test subsets for QSAR modeling. |
J. Comput. Aided Mol. Des. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Gyoung Jin Park, Nam Sook Kang |
ADis-QSAR: a machine learning model based on biological activity differences of compounds. |
J. Comput. Aided Mol. Des. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Kohei Nemoto, Hiromasa Kaneko |
De Novo Direct Inverse QSPR/QSAR: Chemical Variational Autoencoder and Gaussian Mixture Regression Models. |
J. Chem. Inf. Model. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Zixuan Cheng, Siaw San Hwang, Mrinal Bhave, Taufiq Rahman, Xavier Chee Wezen |
Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ. |
J. Chem. Inf. Model. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Markus Dablander, Thierry Hanser, Renaud Lambiotte, Garrett M. Morris |
Exploring QSAR Models for Activity-Cliff Prediction. |
CoRR |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Zhifeng Gao, Xiaohong Ji, Guojiang Zhao, Hongshuai Wang, Hang Zheng, Guolin Ke, Linfeng Zhang |
Uni-QSAR: an Auto-ML Tool for Molecular Property Prediction. |
CoRR |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Yuting Xu, Andy Liaw, Robert P. Sheridan, Vladimir Svetnik |
Development and Evaluation of Conformal Prediction Methods for QSAR. |
CoRR |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Damilola S. Bodun, Damilola A. Omoboyowa, Olaposi I. Omotuyi, Ezekiel A. Olugbogi, Toheeb A. Balogun, Chiamaka J. Ezeh, Emmanuel S. Omirin |
QSAR-based virtual screening of traditional Chinese medicine for the identification of mitotic kinesin Eg5 inhibitors. |
Comput. Biol. Chem. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Hai Duc Nguyen, Min-Sun Kim |
Identification of promising inhibitory heterocyclic compounds against acetylcholinesterase using QSAR, ADMET, biological activity, and molecular docking. |
Comput. Biol. Chem. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Clayton Fernando Rencilin, Joseph Christina Rosy, Krishnan Sundar |
Generation of 2D-QSAR and pharmacophore models for fishing better anti-leishmanial therapeutics. |
Int. J. Comput. Biol. Drug Des. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Piyush Kumar Yadav, Suchitra Singh, Ajay Kumar Singh |
'3D-QSAR-based, pharmacophore modelling, virtual screening, and molecular docking studies for identification of hypoxia-inducible factor-1 inhibitor with potential bioactivity. |
Comput. Biol. Medicine |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Goverdhan Lanka, Darakhshan Begum, Suvankar Banerjee, Nilanjan Adhikari, Yogeeswari P, Balaram Ghosh |
Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors. |
Comput. Biol. Medicine |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Rahul Singh, Parvin Kumar, Jayant Sindhu, Meena Devi, Ashwani Kumar, Sohan Lal, Devender Singh |
Parsing structural fragments of thiazolidin-4-one based α-amylase inhibitors: A combined approach employing in vitro colorimetric screening and GA-MLR based QSAR modelling supported by molecular docking, molecular dynamics simulation and ADMET studies. |
Comput. Biol. Medicine |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Markus Dablander, Thierry Hanser, Renaud Lambiotte, Garrett M. Morris |
Exploring QSAR models for activity-cliff prediction. |
J. Cheminformatics |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Taoufik Akabli, Hamid Toufik, Mourad Stitou, Fatima Lamchouri |
Docking study and QSAR analysis based on the artificial neural network and multiple linear regression of novel harmine derivatives. |
Int. J. Comput. Aided Eng. Technol. |
2023 |
DBLP DOI BibTeX RDF |
|
15 | Antonina L. Nazarova, Aiichiro Nakano |
VLA-SMILES: Variable-Length-Array SMILES Descriptors in Neural Network-Based QSAR Modeling. |
Mach. Learn. Knowl. Extr. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Eleonora Proia, Alessio Ragno, Lorenzo Antonini, Manuela Sabatino, Milan Mladenovic, Roberto Capobianco, Rino Ragno |
Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. |
J. Comput. Aided Mol. Des. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Kiril Lanevskij, Remigijus Didziapetris, Andrius Sazonovas |
Physicochemical QSAR analysis of hERG inhibition revisited: towards a quantitative potency prediction. |
J. Comput. Aided Mol. Des. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Anita Rácz, Timothy B. Dunn, Dávid Bajusz, Taewon David Kim, Ramón Alain Miranda-Quintana, Károly Héberger |
Extended continuous similarity indices: theory and application for QSAR descriptor selection. |
J. Comput. Aided Mol. Des. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | William Bort, Daniyar Mazitov, Dragos Horvath, Fanny Bonachéra, Arkadii I. Lin, Gilles Marcou, Igor I. Baskin, Timur I. Madzhidov, Alexandre Varnek |
Inverse QSAR: Reversing Descriptor-Driven Prediction Pipeline Using Attention-Based Conditional Variational Autoencoder. |
J. Chem. Inf. Model. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Rino Ragno, Anna Minarini, Eleonora Proia, Lorenzo Antonini, Andrea Milelli, Vincenzo Tumiatti, Marco Fiore, Pasquale Fino, Lavinia Rutigliano, Rossella Fioravanti, Tomoaki Tahara, Elena Pacella, Antonio Greco, Gianluca Canettieri, Maria Luisa Di Paolo, Enzo Agostinelli |
Bovine Serum Amine Oxidase and Polyamine Analogues: Chemical Synthesis and Biological Evaluation Integrated with Molecular Docking and 3-D QSAR Studies. |
J. Chem. Inf. Model. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Thereza A. Soares, Ariane Nunes-Alves, Angelica Mazzolari, Fiorella Ruggiu, Guo-Wei Wei 0001, Kenneth M. Merz Jr. |
The (Re)-Evolution of Quantitative Structure-Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods. |
J. Chem. Inf. Model. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | María Virginia Sabando, Ignacio Ponzoni, Evangelos E. Milios, Axel J. Soto |
Using molecular embeddings in QSAR modeling: does it make a difference? |
Briefings Bioinform. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Fahimeh Motamedi, Horacio Pérez Sánchez, Alireza Mehridehnavi, Afshin Fassihi, Fahimeh Ghasemi |
Accelerating Big Data Analysis through LASSO-Random Forest Algorithm in QSAR Studies. |
Bioinform. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Xiaoying Song, Li Chai 0001, Jingxin Zhang 0001 |
Graph Signal Processing Approach to QSAR/QSPR Model Learning of Compounds. |
IEEE Trans. Pattern Anal. Mach. Intell. |
2022 |
DBLP DOI BibTeX RDF |
|
15 | Asmaa Raafat, Samar Mowafy, Sahar M. Abouseri, Marwa A. Fouad, Nahla A. Farag |
Lead generation of cysteine based mesenchymal epithelial transition (c-Met) kinase inhibitors: Using structure-based scaffold hopping, 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, and molecular dynamics simulation. |
Comput. Biol. Medicine |
2022 |
DBLP DOI BibTeX RDF |
|
Displaying result #1 - #100 of 903 (100 per page; Change: ) Pages: [ 1][ 2][ 3][ 4][ 5][ 6][ 7][ 8][ 9][ 10][ >>] |
|